

Electronic Warfare / Electronic Protection (EW/EP) S&T Priority Steering Council

28 November 2012

<u>Distribution Statement A</u>: Approved for public release; distribution is unlimited.

EW/EP Priority Steering Council Scope & Domain Boundaries within the EMS

Electronic Warfare: Military action involving the use of electromagnetic (EM) and directed energy to control the electromagnetic spectrum (EMS) or to attack the enemy.

Electromagnetic Spectrum Management

ES
Tactical sensing for real-time response

EP

Protect EM systems against EM interference

FA

Degrade, disrupt, deceive, & deny adversary EM system signals, processing, and C2 functions

DE (EA)
Induced currents
or voltages

PSYOP/MISO

Induce alarms or failures / influence ideology

Counter-DE

Protect non-EM system against EM interference and DE (Weapon)

C3

Command, Control and Communications (voice, data, info)

Cyber Attack

Operations intended to manipulate adversary info and/or cyber systems

ISR/SIGINT

Intelligence, Surveillance and Reconnaissance gathering systems

DE (Weapon)

Thermal / radiation bombardment

Role of the EW PSC

- Be the EW S&T governance body for the Department
- Define cross-cutting investment strategy
- Develop experimentation strategy & recommendations
- Propose/define collaborations, e.g., integrated EW-Cyber effects
- Engage the community in its ENTIRETY
 - Government, Industry, Academia, International
- Develop seamless metrics across the partnerships
 - How will we know we've met goals?
 - How do we know what level is good enough?
- Incorporate (or reference) IRAD into PSC strategy/roadmaps

Evolving Paradigm

- PSC drive portfolio for the Components (Services)
 - Air Force is the "Champion"
- Provide focus Industry investments
 - Industry seeks guidance
- Drive new technical foundation
 - E.g. Photonics, ultra high precision clocks, MMW

EW/EP Problem Statement

& Desired End State Capabilities

Rapidly evolving challenges to spectrum dominance threaten blue force lethality and survivability

Desired End State Capabilities:

Network-Enabled EW providing time-critical, effective ES/EA/EP via a distributed, heterogeneous EW system-of-systems architecture

Adaptive EW for real-time assessment & deconfliction of the EMS, generation of EA/EP effects, & determination of EW effectiveness

Gap Analyses

Top-down View of System Challenges

Bottom-Up View of Enabling Components

Portfolio of Systems to allow a response, independent of the evolving threat

EW/EP Tech Challenges & Desired End States

- TC1: Cognitive, Adaptive Capabilities
 - Effectively outpace adversary decision and technical options
- TC2: Coordinated / Distributed / Network-Enabled Systems
 - Spatially and temporally diverse responsiveness to dense and complex threat environments
- TC3: Preemptive / Proactive Effects
 - Real-time sensing, assessment and optimization of EA effectiveness
- TC4: Broadband / Multispectral Systems
 - Widest possible spectral extent to our control of the EMS
- TC5: Modular / Open / Software-Configurable Architectures
 - Timely deployment or insertion of advanced EW in response to rapidly changing conditions
- TC6: Advanced Electronic Protection Techniques & Technology
 - Allow unfettered operations in the increasingly dense EMS environment

Dual Approach for Solutions

Top-down View of Critical Challenges

M&S/DT&E		
Precision EMS mapping	Precision timing, protocols, links	Predictive/ anticipatory algorithms

EO/IR ⇔ mmW ⇔ RF Interface standards

STAR
(Simultaneous
Tx & Rx)

> Extremely

→ Extremely high isolation

TC1 Cognitive, Adaptive

TC2
Distributed,
Net-enabled

TC3
Proactive,
Pre-emptive

TC4
Broadband,
Multispectral

TC5
Modular/Reconfigurable
H/w-S/w

TC6
Adv EP
Techniques/
Technology

Bottom-up View of Game-Changing Components: RF

- Agile, high dynamic range receiver electronics
- Ultra-wideband RF photonics
- RF power generation
- Underlying enabler: Ultra-precision clocks/ oscillators (Order of magnitude+ timing reference improvement))

Bottom-up View of Game-Changing Components: **EO/IR**

- Next gen, multispectral infrared focal plane arrays
- Multi-spectral, high power lasers
- Multispectral optics/phase control
- Underlying electronics enabler: Nitride family of semiconductors (GaN/InN/AIN)

Bottoms-Up View of Enabling Components

STAR, Cognitive and Distributed/Networked capabilities are EW game-changers

Challenges for Community (Candidate Technologies for Acceleration)

2012-13 PSC Update

- Advanced Components for EW (ACE) Goal: To be "MMIC"-like program
 - Integrated Photonic Circuits (IPC)
 - MMW Source & Receiver Components
 - Reconfigurable, Adaptive RF Electronics (RARE)
 - 3D-Heterogeneous Integration of Photonics Sources (3D-HIPS)
- ASD(R&E) Comprehensive Review identified areas for potential acceleration
 - Integrated EW/Cyber Effects (likely joint with Cyber PSC)
 - Adaptive Control Architectures/Scalable Network/Autonomous Control (possibly joint with Autonomy PSC)
 - Real-time Adaptivity ES, EA, EP
 - Simultaneous Transmit & Receive (STAR)
- Incorporate identified system challenges, acceleration areas, and enabling components into the PSC's 6 TC roadmaps, overlayed with rigorous technical metrics and transition offramp opportunities

Summary

- Electronic Warfare is a critical enabler for air, land, sea, space, and cyber operations
- 2011-2012 analyses converged on a consistent list of long term game-changing tech challenges...
 - Cognitive capabilities
 - Networked, distributed, coherent systems
 - Real-time adaptive capabilities
 - Simultaneous Tx & Rx (STAR)
 - Enabled by highly linear, agile, high dynamic range, ultra-wideband / multispectral transmit & receive components, precision clocks/oscillators, and phase-controlled apertures
- Roadmaps being re-configured with metrics to achieve an integrated EW systems/components and warfighter transition investment strategy

EW/EP PSC Membership

Champion: USAF (SAF/AQR)

PSC Lead: Mr. David Hime

OSD: Mr Jay Kistler, Dr. Karl Dahlhauser -- ASD(R&E)

Air Force: Mr. David Hime (Lead), Mr. Marv Potts, Mr. Joe Koesters

Army: Dr. Paul Zablocky (Lead), Dr. Leslie Litton, Mr. Bill Taylor

Navy: Dr. Peter Craig (Lead) , Dr. Frank Klemm, Dr. Gerry Borsuk

ACE Technology Analysis and Planning (TAP) Service Leaders

ACE TAP Lead: Dr. Gerry Borsuk, NRL

Air Force: Dr. Stephen Hary, AFRL

Army: Dr. Eric Adler, ARL

Navy: Dr. Stephen Pappert, ONR

DARPA: Dr. Bruce Wallace

Broad Agency Announcements

- Industry responses to the grand challenges identified in this brief should engage in dialogue with the PSC leadership
- The following Broad Agency Announcements (BAAs) may also provide an avenue for specific ideas:

Air Force

 BAA 09-01-PKS: "Sensor Technology Research, Development, Test & Evaluation Open-Ended Broad Agency Announcement (STROEB) II"

Army

 BAA W15P7T-09-R-S152: "United States Army Communications-Electronics Research Development and Engineering Command Intelligence and Information Warfare Directorate Broad Agency Announcement I2WD 2009"

Navy

 BAA ONR 13-001: "Long Range Broad Agency Announcement for Navy and Marine Corps Science and Technology"